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Solution Tuning - an attempt to bridge
existing methods and to open new ways

When we look at applied engineering tasks we often meet the situation where measured data must be used to 
find a certain result.
These tasks can be described in a very generic way as follows:

y = Aν
where: A − is a linear operator, e.g. a matrix

y − is the measured vector
ν − is the unknown vector that is searched

A - may be a Fredholm operator. In this case

ν(t) is searched within the space F and 
y(τ) ∈ν – is the space where the measured data are derived from.

Here, we have to solve an inverse task and the usual solution approach y = A-1n can lead to unstable (w.r.t. 
Hadamard) results.

We face this problem in many cases, e.g. when we have to deal with
- Empirical Risk Minimization, 
- Modeling and Forecasting, 
- Pattern Recognition,
- Reconstruction of dependencies 

by measured data,

Therefore these tasks can be solved by means of optimization instead of using the rules of inversion.
The elaboration (80 % of success depends on it) and the solution of optimization tasks is connected with many 
characteristics that are common for a lot of different applications.
This poster-presentation describes and partly generalizes these common characteristics with the help of 
examples and using geometric representations.

- the solution of the Fredholm Integral Equation of the first 
kind (e.g. convolution, Wiener Filter) 

- the handling of Matrices which are sensitive to inversion.
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When we use 
measured data for 

searching a 
solution or making 

decisions
sometimes the 
results may be 

unstable, biased 
or ”distorted”.



The picture with the hare and the wolf just 
simplifies the quantitative tasks which have to be 
solved in a very fast way by animals and humans 
more than 1000 times a day, e.g. when the 
trajectory of the race is not a road and is unknown.
Feedback control tries to imitate the pursuer.
Optimal control tries to imitate the victim who 
must be more clever to survive.
The decision spaces for both the pursuer and the 
victim are different, but the solution approaches 
are similar.
Let us just simplify the problem a bit and forget 
about the two decision spaces.
Even more, let us take from the continuous time 
only one moment i and consider the decision 
making only for this one moment i.

For that case the task of minimizing (if you are the pursuer) the distance 
within the decision space Q (a1,a2,....,am) can be formulated as follows:

The best decision is the optimum value 
Q*(a*1,a*2,....,a*h) = min Q (a1,a2,....,ah)

with 
a1... ah – as decision coordinates, e.g.

a*1= γ*1i – the angle by which the driver should turn steering wheel
in moment  i

a*2 – the optimum acceleration in moment i

Why can little animals so easy solve such a problem where we spend so 
much effort with  mathematical abstractions ? Maybe, we can learn from the 
nature ? Maybe, the magic is not only in mathematics but also in
Optimization and Feedback principles ?
Example:

min Q (a1,a2,....,ah) = min ρ(object1, object2) = min ρ(y, F(x,a))
The difficulties are cause by the fact that

F(x,a) – is unknown, that means 
- the form of the function is unknown
- the number h of the parameters a1... ah is unknown
- the values of the parameters a1... ah are unknown

x – is measured (best case) without but more often with disturbances
y – is measured with disturbances 1

1. The task of finding the object F(x,a*) is an inverse task and all inverse 
tasks can usually be solved with the help of optimization, what lead us to 
the minimization of the distance between two objects.

2. The metric, that means the interpretation of the distance between the 
objects, can be chosen depending on the sense of the task. But the used 
metric has influence, sometimes even significant influence, on the skyline 
of the ”mountains” built by the optimization functional within the decision 
space.
Example:

3. The absolute minimum of the functional Q sometimes does not deliver a 
satisfying solution (F(x,a*)) and can only be used as orientation.
The reason for that phenomenon lies in the following contradiction:
The deeper the minimum of the functional the more exact is the solution 
but only with respect to the given data sample. But at the same time the 
model can be very complex (e.g. polynomial of high degree) and fits only 
to this one (given) data sample. That means the solution (e.g. the found 
model) does not properly work for a new data sample derived from the 
same object. The solution (the model) is unstable and does not give any 
useful prediction.
What is the way out ? The way out is polyoptimization that means the 
introduction of penalty functionals that “punish” for complexity.  In this 
way we get new “mountains” within the decision space.

4. The change of the geometry of the “mountains” within the decision space 
or the change of the dimensioning of the decision space (compare, for 
example, with α-procedure) following the goal of making the solution 
stable is called here Solution Tuning.
For these changes different mathematical tools can be used.
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The task is to find this function F(x,a*) – it’s structure and it’s parameter 
values - in a way that the solution will be stable.
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Task of Mean Square Risk (Qm) and Task of Empirical Risk (Qe)
in case of Pattern Recognition and Neuronal Networks

In case of Empirical Risk we do not use

but 

where ωi and xi – are empirical data and
l - is the length of the data sample of the pairs ωi and xi

Here we search F*(x,a) as optimum decision rule for classification.

Speaking about pattern recognition the physical sense is as follows:
The experimental observations are given as vector x but it’s classification 
with the help of the number ω. We can have up to p-1 classes.
The task is to construct the decision rule ω=F*(x,a) with the help of the 
available sequence of l observations and classification x1,ω1;...; xl,ωl in such 
a way that this rule will classify new observations with a minimum of errors.
To make the things simple – let us just consider two classes V1 and V2.

Now, let us consider 2 typical problems:

( ) min),(),(
2* →−= ∫∫ ωωω dxdxpaxFQm

( ) min),(1
1
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Problem 1

Q

a

Qe

ae*

Qm

am*

*QmQe*

bad area of data sample (outlier)

The empirical functional deviates 
significantly from the mean square 
functional. This is typical for outliers 
within the measured data..

Problem 2

- objects v1 ∈ V1

- objects v2 ∈ V2

V1, V2 – two classes

(Source: O. Bousquet, S. Boucheron, G. Lgosi: Introduction to 
Statistical Learning Theory. 
www.kyb.mpg.de/publications/pdfs/pdf2819.pdf

How can we find the best compromise 
between fit and complexity ?

4

The problem 1 was solved by Vapnik with the help of a generalization of 
the Glivenko-Cantelli Theorem of Uniform Convergence.
Vapnik used the C-metric instead of the Lp

2-metric:

( ) ( ) ( )2121 ,,sup, axfaxfff −=ρ

The use of the C-metric limits the effect of the outlier sample up to a 
certain width of the corridor. 

Vapnik’s Theorem:
When we select from a set of N decision rules that one rule that gives us a 
error frequency on the training sequence which is equal ν, then we can 
claim with a probability of 1-η, that the probability of making an incorrect 
classification with the help of the selected rule equals a value which is less 
than ν + ε if the length of the training sequence is not less than

22
lnln

ε
η−

=
Nl

For the problem 2 there exists a solution approach since the beginning of the 
eighties – especially for “short data samples”. It is the so-called “reduction 
theory” or the “α-procedure”.
With respect to Vapnik one can say: The less the number of decision rules N
the less can be the length of the training sample. 
Further on we define k as number of hypersurfaces within the decision space.
If k = 1 then we have a linear discrimination.
The number of the decision rules can be defined as:

( )2ln mkN ⋅≈
where m – is the primary dimension of the decision space (number of 

primary characteristics of object classes).
Out of these number of primary (or original) characteristics m a subset n0 of 
the most powerful characteristics should be selected.
The reduction theory provides a procedure how to synthesize a (reduced) 
space of dimension n0 in which a correct linear discrimination of the object 
classes - given by the training sample of length l – will be possible.

m
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Any exceeding of n0 leads to the loss of the guarantee that the given ε and η 
can be reached.
To avoid a dimensioning of the decision space that exceeds n0 we define the 
“power of discrimination”

( )
l

xF ii
i

1−−
=

ωω

where ωi-1 and ωi are the number of objects of the training sample which have 
been correctly classified before and after the characteristic xi was counted.
For the synthesized decision space we will only use only the characteristics 
with the greatest values of “power of discrimination” but in any case it should 
be greater than the minimum value

( )
0

min n
lxF i =

Task of Mean Square Risk (Qm) and Task of Empirical Risk (Qe) 
in case of Empirical Regression for Modeling and Forecasting, 

Neuronal Networks and Group Method of Data Handling (GMDH)

( ) min),(),(
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Here again we substitute the Mean Square Risk (Qm)

by the Empirical Risk (Qe)

but the content of F(xi,a) is different.
F(xi,a) is an unknown polynomial which approximates linear or nonlinear 

regressions or unknown dependencies y on x.

x1,y1; .... ; xi,yii;...; xl,yl – are the measured data which “generate” that 
dependency.

Here again we look at the compromise between fit and complexity.
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Comparison of
a True and an 
Overcomplicated 
Model Structure

This problem of finding the best compromise between fit and complexity was 
differently solved by at least 20 authors (e.g. Vapnik, Akaike, Schwarz, 
Lange – see appendix 4).Vapnik (Structure Minimization) and Lange (Model 
Tuning) follow Tichonoff’s ideas.

Let us shortly describe the idea of “Model Tuning” for that case:
First, there were introduced 3 new terms for the proximity of the models
FI(x,aI) and FII(x,aII) which are based on the general definition of “Solution 
Stability” given by Hadamard.

**  and III QQ

III QQ  and are functionals (criteria) for estimating parameters by 
means of Least  Square Methods 

are the values of RSS of the first and second model.

(1) With regard to the output y, two models MI and MII are near to each 
other (that means                    , where  ε is small). This corresponds to 
the convergence according to the output, when   and γ are 
small,
where yI and yII are output vectors of the models MI and MII .

If  ρl represents an l-dimensional Euclid Metric, then                   can be 
replaced by the equivalent postulation 

where

( ) ερ ≤IIIlR   M,M

( ) γρ ≤III yyl ,

( ) γρ ≤III yyl ,

( ) γρ ≤*,*
IIIl QQ
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Distance between 
models estimated on 
different data sets

Case 1:
Proximity of 
Models only
according to the 
output y

(2) Two models MI and MII are near to each other with regard to the 
coefficient vector (that means                     , where ε is small). This 
corresponds to the convergence according to the parameters, when

and ξ are small,

** ˆandˆ    III aa rr correspond to the estimated values of the 
parameter functional.

( ) ερ ≤IIIlR   M,Mar

( ) ( ) ξρ ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

** ˆˆ ,1 IIIM aa rr

** ˆandˆ    III aa rrwhere are the vectors of the estimated parameters of the 
models MI and MII .

Distance between 
Models estimated on 
different data sets

Case 2:
Proximity of Models 
only according to 
the coefficient vector
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(3) Two models are really near to each other if the proximity of outputs y 
and parameters     is guaranteed. The distance between two models is 
defined by the sum of distances between outputs and parameters:

ar

ξρρ γ << + )ˆ,ˆ( and ),( **
1 IIIMIIIl aayy rr

⇔ ( ) ερ <IIIlR   M,M

Distance between 
models estimated on 
different data sets

Case 3:
Complete Proximity
of Models

QII

QI

Q
II
*

aII
*

aI
* ρ

M+1 (a* a*,I II )

ρ(QI QII, )* *

aj+1

aj

Q

QI
*

We consider here the case 1 where we 
do not have complete complexity.
Thus the Gauss’s method and 
consequently the Residuum Sum if 
Squares (RSS)  is not always applicable 
because they do not exclude unstable 
models.
The problem is the harder the more the 
functional has a “trough”-like form.

The bottom of that “trough” builds the “zone of insensitivity”. 
For this special case (the “trough”-like functional) the “Model Tuning” offers 
two possibilities for the simultaneous calculation of both the structure and 
the parameter values of F(x,a):

The first idea is to add stepwise new terms to the polynomial in the 
order of their “power of discrimination” using the rules of the α-
procedure and the so-called “compromising clearance” ξ as corridor 
of permissible tolerance.
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We use here in a formal-mathematical way the α-procedure originally 
developed for pattern recognition – formally considering each term of 
the polynomial like a “characteristic” in case of pattern recognition.
Thus the well-proven algorithms of the α-procedure can be used for the 
finding of the functional that makes a good compromise between fit and 
complexity.

The second idea consists in the introduction of the new Local Data 
Uncertainty Criterion (LDUC) as an evolution of Tichonov’s idea of 
poly-optimization, i.e. the use of an additional ”penalty”-functional for 
finding a compromising solution.

additional 
functional

21 QQQe ⋅+= α

The figures above illustrate the Ridge-estimation: 
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2
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with α – as Tichonov’s regularization Parameter.
The value αi corresponds to the Lagrange Multiplier and the value cj
defines the restriction of the contour lines of Q2.
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The next figures showing us a quadric metric should be understood just as a 
partial help for the explanation of the LDUC.
The  figures show a continuous space representing the complete decision 
space with all parameters of the Kolmogorov-Gabor polynomials.

10

In a common and analytical form the Local Data Uncertainty Criterion
(LDUC can be represented as follows:

( )( )[ ] ( )IIIF
T
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- is the main criterion,   

- is a correlation matrix

- is a metric in space Y but it transforms RRS into the space of coefficient F

- is a measure of the stability of modelling in the space F

The used metric may be different (see appendix 2), e.g. 
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The estimation of the coefficients is performed NB times 
where B is the number of he Bootstrap tables. ( )
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Q 2
1 σ̂ 2Q - is the penalty criterion

The functional Q1 reflects – with the help of the square sum of the axis's of 
the ellipsoid – the sensitivity of the coefficients and with it the structure that 
is caused by the data sample y but transformed into the space F, a ∈ F.
The functional Q2 reflects the sensitivity of the coefficients that is caused by 
the given structure of the polynomial.

Q1

Q2
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For the LDUC proposed by the author of this paper there also exists a 
robust version that uses a robust metric.
Unfortunately the use of robust metrics affects the computing complexity of 
the optimization task because it may lead to complex landscapes of Q.

Robust Estimation and Robust Metrics for Structure Selection Criteria

40 years after the Glivenko-Cantelli theorem Tukey initiated with his two 
ideas a new direction of development of mathematical statistics.
Both ideas are connected to the terms “distance” and “metric”.
The first idea that can be considered as “foundation stone” of robust 
estimation will be described below. The second idea – the introduction and 
use of the term “data depth” instead of mathematical expectation – will be 
shortly discussed in the outlook of the given paper.
Now, let us shortly describe that “foundation stone” of robust estimation 
under the angle of modeling.

During the measurement of the quantity a for the estimation of           any 
outlier can significantly change the result. It is unknown whether that
outlier belongs to the parent population or whether it is caused by a short 
non-representative data sample (see figure above). We have to do with a 
heavy-tailed distribution.
The target is not to eliminate the outlier completely but to reduce its 
influence. For that purpose a penalty by changing the metric is 
introduced:

)(ˆ aE

y

x

outlier

y(x)

F(x,a*) p(a)

a

( ) 20ˆˆ <<−=− ∑ kaaaa k

i
iiiiρ

a

( )ii aa ˆ−ρ a2 |a|3/2

|a|1/2

|a|

1

1The “slightest” penalty is on the left to a=1, 
the “highest” penalty is the square metric.
k=1 means Huber estimation.

For “short” data samples we can use the Gnostic Theory which works with 
the “Gnostic” distance that is also a robust distance.
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Summery

About Distances and Metrics
The situation when instability appears during the handling of inverse tasks 
leading to “multiple” solutions (as shown with the help of the “trough”) 
requires additional information for “fixing” the solution.
Two big directions of the solution of the problem have been emerged –
reflecting the application area but also the affinity of the scientists.
The first and more generic direction was born during the work with 
continuous objects, e.g. with the convolution equation. Together with it 
Tichonov developed his “Regularisation” Theory. In the contexts of 
compiling algorithms this theory can be shortly represented as a
polyoptimization task: ( ) ( ) ( )[ ] min* 21 →⋅+= νανν QQQ

with ν - as searched solution vector, i.e. the 
coordinates of the optimum. 

... compare with the 
angle of the wolf’s 
steering wheel ;-)

Behind Q1 and Q2 there may be hidden the distances with different metrics:
( ) ( ) ( )
( ) ( ) ( ) ( )212

2
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,

,
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νρνν

FF

yy

QQ

AyQQ

=Ω==

== - distance in the space of measured data y, y ∈Y

- convex functional in the space F, ν ∈F

It can also be that ( ) ( ) ( )szsz 2121 sup, −=ννρ

where s – element of the definition interval of the linear operator A. 
(refer to Glivenko / Vapnik)

For example, 
2)( a=Ω ν gives us a Ridge-estimation. 

A different but similar functional Ω for estimations was proposed by LAN 83.
In general, the biggest problem in modeling the regression of polynomials is 
caused by the fact that the estimation of the parameters and of the 
structure are different – the estimation of the parameters is done in a 
continuous space but the estimation of the structure - in a discrete space.
The second direction is connected to such applications like pattern 
recognitions and structure minimization. It has many faces and proposes a 
lot of approaches. We can joke and say that the direction of investigations 
itself is nothing else than a great variety of solutions. The first proposals 
were done by Fisher, Neyman and Pearson and close to the task of 
polyoptimazation. But they were not really usable for automatic algorithms 
for the computing of F(x,a)

The definition of the regularization parameter α may be very 
difficult. The Ridge Regression is just special and easy case. 
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But with the following proposals that disadvantage was eliminated and it 
became possible to find a compromise between the complexity of the model 
(or the complexity of decision rules) and the fit for a given lengths of the 
data sample with the help of automatic computer algorithms.

2

1

Q
QQ =

(1) Mallows, Vapnik and others 
proposed a “Scaling Criterion”
for the step of structure 
selection:

(2) Akaike, Broersen, Schwarz, 
Hampel and others introduced 
a penalty criterion:

21 QQQ +=

where Q1 - is the main criterion and Q2(l,h) - an additional criterion. 
Ivachnenko, Tamura, Kondo, Sawaragi, Lange and others also 
proposed a modification for the sub-direction (2) – “penalty by 
validation”.
The reason for the big number of proposals which work more or less fair 
can be explained by the phenomena that it is difficult to implement the 
best and most elegant theoretical ideas as computer algorithms.

Outlook

Let us remember the second famous idea of Tukey (1974) – the introduction 
of the term data depth – which has disburdened us from the binding to  a 
concrete distribution function. (From where the poor animals – our hair and 
wolf - should have information about the distribution ?)

After Tukey (see overview Zuo 2000) different methods for computing the 
data depths were proposed. The term “convex hull” was introduced. With it 
the goal to use these methods for many applied task, e.g. for pattern 
recognition and modeling, moved closer. 
But all corresponding tasks were restricted to a dimension of m=2.
But the problem of extending the dimensioning to m > 2 was solved by 
Mosler/Lange/Bazovkin [MoLaBa 2009] and new opportunities for pattern 
recognition have been opened. 
The overcoming of the dimensioning restrictions also helps to improve the 
use of the α-procedure (original as method for pattern recognition) for 
modeling better solving the “clearance problem”. 

It opens opportunities for the direct calculation of the scaling distance 
from the measured data and it’s use for the discrimination of object 
classes. With it the following scaling distances are especially important:

14

If we can finally solve the problem of the data function depth we could 
solve the modeling task in a direct way: First select the structure and 
then estimate the coefficient values.
Maybe the psi-transformation can help to elaborate an effective method 
for the estimation of the data function depth.
The psi-transformation was proposed by Chichinadze for the optimization 
in case of discontinuous multimodal “mountains”. It is based on the term
Lebesgue Measure.
But today there is no room for further discussions with respect to that 
topic.

- Machalanobis distance which is the lower estimation 
of the quality of the decision rule when the length of 
the data sample is fixed

- Novikov distance which is the upper border of the 
quality of the decision rule

2

1

Q
QQ M

M =

2

1

Q
QQ N

N =

V1 V2

M1
M2Q1M

Q1N

Q2

V1,V2 – object classes
M1,V2 – data depth
Q1N,Q2 – distances between the 
internal and external convex hulls 

ξ5

ξ0

ξ1

ξ2

ξ3

ξ4

F(x,a)

a

Ψ(ξ)

ξξ*

ξ0

ξ1

ξ2

ξ3

ξ4

ξ5

F(x,a)

a

Ψ(ξ) - Lebesgue Measure
for each level

This presentation and the attachments will be available on 
http://www.iks.hs-merseburg.de/~tlange/ 
Contact: tatjana.lange@hs-merseburg.de
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