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on mathematical terms:

• Stability of the solution
Hadamard J.: Sur les problèmes aux dérivées partielles et leur signification 

physique, Bull, Univ. Princeton, 1902

• Correct / Incorrect Setting up of Tasks
Hadamard J.: Le problème de Cauchy et les equation aux dérivées partielles 
linéaires hyperboliques, Hermann P., 1932

• Regularization Methods / Regularization Operator
Tichonoff A.N. (Тихонов, А.Н.): О регуларизации некорректно поставленных
задач. ДАН СССР, 1963

on the restoration of functional dependencies with the help of empirical data

• Vapnik, V.N. (Вапник, В.Н.): Востановление зависимостей по эмпирическим
данным. Москва, Наука, 1979

on the application of the regularization method used for creating criteria for 
automatic model selection:

Lange, T: Anwendung der Regularisierung bei der Bildung von Modellen in Polynomform 
nach MGEA. Wiss. Kolloquium Ilmenau, 1982 
Lange, T: New Structure Criteria in Group Method of Data Handling. Kluwer Academic 
Publishers, 1994
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2. Historical Terms
“Direct and Indirect” tasks
“Stability” and “Correctness” according to Hadamard
“Regularization” according to Tichonoff
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Direct and Inverse Tasks:

Example: yA =ν
whereby ν and y are vectors

A is an operator (e.g. a matrix)
Direct task: 

given: A and ν
searched for: y

Indirect task: 
given: A and vector y measured (maybe inexactly)
searched for: vector yA 1−=ν

Operator A-1 may be unstable and 
discontinuous, respectively !

How to find a quantitative solution for

( )yR=ν
?

?
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*)      Finding the solution to a quantitative task usually involves determining a 
solution ‘ν’ from the given sets of data: y.

In other words: ν=R(y) 

**)     Let us assume that y and ν are elements of the metric spaces Y and F.
The distances between two elements y1 and y2 in the  metric space Y, and 
two elements ν1 and ν2 in the metric space F, are: 

Normally, metric is determined by practical conditions.

***) Let us assume that the term “solution“ is defined and that every
element (y Є Y) corresponds to the one and only solution ν=R(y) 
from the space F.

( ) ( )2121 , and , ννρρ FY yy

The stability of a quantitative solution and the 
correctness of the solution according to Hadamard.
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The task of searching for the solution ν=R(y) from the space F using the primary 
data y Є Y is denoted stable in the spaces F and Y if for any number, ε > 0, it is 
possible to find such a number δ(ε)> 0 so that the inequation

follows, so that 

whereby ν1,ν2 Є Y and ν1=R(y1), ν2=R(y2).

( ) ( )εδρ ≤ , 21 yyY

( )   , 21 εννρ ≤F
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The task of determining a solution ν, ν Є F, from the space F, using the 
primary data, y Є Y , is regarded as correct for the pair of metric spaces F and 
Y if the following conditions are met:

1) For any  element, y Є Y, there is a solution ν from the space F.

2) The solution is clearly determined.

3) The solution is stable in spaces F and Y.

Points 1 and 2 characterize mathematical certainty and point 3 is connected to 
physical determinism and the possibility of the application of numerical 
methods for solving the task from inexact data.
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Regularization Method according to Tichonoff:

[ ] ( ) ( )

(metric) Yin  distance - 

 ,,, 2

Y

y yAAyR

ρ

νανρν Ω⋅+=

will be minimized.

Whereby
Ω(ν) - stabilisation operator

metric ρ and operator Ω(ν) are determined by practical conditions.
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3.3. Setting up a task for the Setting up a task for the 
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Selection of Model from Measured Data

1. System:  
x1

xm
+
δ - disturbance

yδy
s y s t e m

2. Data table (data set):  

3. Setting up of Model (Kolmogorov-Gabor polynomial):  
y a a x a x x a x xk k kj k j k q k q

qkjkk
= + + + + ∑∑∑∑∑0 ... ... ......

m - stands for the number of input values
(M+1) - stands for the number of coefficients to be estimated
K - stands for the maximum degree of polynomial K=(s+t+…+u)

The following values have to be found:

The task of structure modelling
 *Kpower  optimal spolynomial  theand *M inputsrelevant  ofnumber   the-   **,

),...., ,(*t vector coefficien  theof  valueoptimal  the-           *
'

10

KM
aaaaa M=

rr
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system input values

xi
sensor 2 y

output value

sensor
+

δ

xm
sensor 3

x1
sensor 1

system
y

δ

Connection 
between System 
Interfaces and 
Model Interfaces
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+
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Connection 
between System 
Interfaces and 
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Static characteristic:

Second Group:

Dynamic characteristic:

Third Group:

Autoregression:

y f x x xm= ( , ,..., )1 2

y f y y y x x x

x x x x
k k k k q k k k q

k k q m k m k q

= − − − − −

− − − −

( , ,..., , , ,..., ,

,..., ,..., ,..., )
, , ,

, , , ,

1 2 1 1 1 1

2 1 2 1

y f y y yk k k k q= − − −( , ,..., )1 2
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4.4. Problems arising when Problems arising when 
selecting modelsselecting models
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Extrapolation Area Extrapolation AreaInterpolation Area
(control area)

Comparison of a True and an Overcomplicated Model Structure 

y

x

Disturbed Data True Model Structure Overcomplicated Structure

Poor Forecasting
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xk xj

y

xk xj

y
Regression Surface

Example of a Regression Surface in the case of a 
simplified structure
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Table of Possible Solutions

Discreet Solution to Structure Selection and Stability 
according to Hadamard.

Here are

Lννν ,...,, 21
- different possible solutions in polynomial which are 
determined by vectors of the coefficients

rz - a design vector

LQQQ ,...,, 21 - the values of the criterion for structure selection 

In the case of a Euclid Metric the 
distance between the solutions 
(models) is determined as 
follows:

( ) ( )∑
=

−=ννρ
M

j
kjijki aa

1

2ˆˆ,

or for two different data sets:

( ) ( )∑
=

−=ννρ
M

j
IIjIjIII aa

1

2ˆˆ,
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Penalty is necessary for 
overcomplicated model structures !
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• If the task is assigned incorrectly according 
to Hadamard:

The stabilizing penalty functional Q2 
should be introduced.

Q2 cannot be used without Q1

• If the task is assigned correctly according to 
Hadamard:

Q1 can be used on its own.

•Corresponds to the Minimization of the 
Error of Second Kind

• Corresponds to the Minimization of the Error 
of First Kind

• Improves the Robustness of Estimation• Improves the Efficiency of Estimation

• Improves the Convergence of the Model 
according to the Coefficients

• Improves the Convergence of the Model 
according to the Output

• Reduces the Bias of the estimated result• Reduces the Dispersion of the Model

• May lead to Simplified Model Structure• May lead to Overcomplicated Model 
Structure

• Improves the Forecast Capabilities of the 
Model

• Improves the Interpolation Capabilities of the 
Model

Penalty criterion:Main criterion:

( )

( ) min......ˆˆˆ  :e.g.

minˆ,

1

2
221101

1

→−−−=

→=

∑
=

l

i
iii

Measuredy

xaxaayQ

Q ννρ ( )

minˆ  :e.g.

minˆ,

1

2
1

2

→=

→=

∑
=

M

i
i

MeasuredF

aQ

Q ννρ

Comparison of Main and Penalty Criteria
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5.5. Introduction of a Regularization operator Introduction of a Regularization operator 
for automatic structure selection and the for automatic structure selection and the 
estimation of parametersestimation of parameters
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**  and III QQ

III QQ  and are functionals (criteria) 
for estimating 
parameters by means of 
Least  Square Methods 

are the values of RSS of 
the first and second 
model.

(1) With regard to the output y, two models MI and MII are near to each other 
(that means                    , where  ε is small). This corresponds to the convergence 
according to the output, when

and γ is small,

where yI and yII are output vectors of the models MI and MII .

If  ρl represents an l-dimensional Euclid Metric, then                   can be replaced by the 
equivalent postulation 

where

( ) ερ ≤IIIlR   M,M

( ) γρ ≤III yyl ,

( ) γρ ≤III yyl ,

( ) γρ ≤*,*
IIIl QQ

 

QII
QI

aII
*

aI
* ρ

M+1 (a* a*,I II )

ρ ( Q I QII, )* *

aj+1

aj 

Q

aj(II)
*aj(I)

*

aj+1(I)
*
aj+1(II)*

QII
*Q*

I

Distance between models estimated on different data sets

Proximity of 
Models according 
to the output y
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(2) Two models MI and MII are near to each other with regard to the coefficient vector
(that means                     , where  ε is small). This corresponds to the convergence 
according to the parameters, when

and ξ is small,

** ˆandˆ    III aa rr
correspond to the 
estimated values of the 
parameter functional.

( ) ερ ≤IIIlR   M,M

ar

( ) ( ) ξρ ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

** ˆˆ ,1 IIIM aa rr

** ˆandˆ    III aa rrwhere are the vectors of the 
estimated parameters 
of the models MI and 
MII .

QII

Q I

aI
* ρ

M+1 (a* a*,I II )

ρ(QI QII, )* *

aj+1

Q

ajaII
*

a j(I)
* a j(II)

*=

QII
*

QI*

Distance between Models estimated on different data sets

Proximity of 
Models according 
to the coefficient 
vector ar
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(3) The two models are really near to each other if the proximity of outputs y and 
parameters     is guaranteed. The distance between two models is defined by 
the sum of distances between outputs and parameters:

ar

ξρρ γ << + )ˆ,ˆ( and ),( **
1 IIIMIIIl aayy rr

⇔ ( ) ερ <IIIlR   M,M

QII

QI

Q
II
*

aII
*

aI
* ρ

M+1 (a* a*,I II )

ρ(QI QII, )* *

aj+1

aj

Q

QI
*

Distance between models estimated on different data sets

Complete
Proximity
of Models
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a k

a j

Virtual Instability of the Solution in the case of very flat 
functionals

Projection of the contour lines 
of the functional in the case of 
an almost unstable solution.

A

B

The segment AB represents 
the area of possible solutions.

a(I)
*

ak

aj

Q

a j(I)*

ak(I)*

Q*I

QI
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A

B

A'

B'

Q

a j

a k

A really unstable functional

The entire segment A’B’ represents the area of possible solutions.
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a k

a j

A

B

a k

a j

A’

B’

Projection of the 
contour line of  the 
penalty functional

Limitation of the solution area using a penalty 
functional.
The segment A’B’ represents the new (reduced) 
solution area.
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6.6. LDUC LDUC –– the Local the Local 
Uncertainty CriterionUncertainty Criterion
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( )( )[ ] ( )

( )
( )
( )IIIF

Y

T

m

IIIF
T

Y

aa
yy

xx

QQ

aaxxyytrQQQ

rr

rr
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1

1
21

ρ
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ρρ

−

−

=

+=+==

- is the main criterion

- is a correlation matrix

- is a metric in space Y but it transforms RRS into the 
space of coefficient F

- is a measure of the stability of modelling in the 
space F
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Example 1:
LDUC used for a Euclid Metric and a simple Data Validation

( )
( ) ( )

BA

B

B

h

j
BjAjB

T
B

B

i
BiBi

aa
h

 y
        y

lBA

aa
hB

yy
tr

ˆ,ˆ

ˆ
      

ˆˆ
ˆ

LDUC            
1

21

2

=+

−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
= ∑

∑
=

−XX

- is the sum of two data sets of different size (the original data set l has been 
subdivided into two parts A and B)

- is the calculated response of model A (determined with the help of data set A) 
to the input data described by matrix XB

- is the measured response to the input data described by matrix XB

- is the number of coefficients within the model
- are the coefficients estimated with the help of the two different data sets A and 

B for a given model structure
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Example of the Forecast Properties of Different Structure Selection Criteria
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Example 2:
LDUC used for a Gnostic Metric, Bootstrap and a Ridge Correction

( )( )

( )( )

( )( )

( )( )
4

0
2

1

2

T
4

1
2

1

2

ˆˆˆ
1

ˆˆˆ
1)(

ˆˆ
1

ˆˆ

∑

∑

∑

∑

=

=

=

=

−

−
+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

−

−
= M

j jjBoot

M

j
jjBoot

l

i iBoot

l

i
iBoot

Boot

aaE

aaE

yyE

yyE
trLDUC IXX α

whereby

l - is the number of measured data points
M - is the number of coefficients within the model
ÊBoot - is the estimation of the mathematical expectation of the evaluation value y
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7.7. Summary and OutlookSummary and Outlook
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What is special about LDUC ?

1) Q2= Qp does not have a weighting coefficient.

Instead of using a weighting coefficient, additional information is 
obtained, for example, by “Bootstrap”.

2) In contrast to RSS criterion, Q2= Qm is transferred to the coefficient 
space F.

3) Information for a kind of metric is obtained from the pracrical
circumstances of the modelling. (a Gnostic metric may also be 
applied.)

Summary:
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Outlook:

Comparison of the three ways of creating criteria of a “Penalty nature” for 
modelling, clustering and recognition purposes:

1) Additive criteria (refer to Akaike, Broerson, Schwarz, et al.)

whereby 
l - is the number of measured data points
h - is the number of terms (coefficients) of the model

2) Multiplicative criteria 
for modelling (refer to Fisher, Kondo, Mallow, Tamura, et al.) 
for clustering
for the restoration of functions (refer to Vapnik)

3) Additive criteria (refer to Lange)

whereby
Qp - is a measure of the stability of modelling

( )hlQQQ pm ,+=

⎟
⎠
⎞

⎜
⎝
⎛⋅=

h
lQQQ pm

pm QQQ +=
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-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

measured data

x1(t)

extrapolation 
area

interpolation area
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Measured data
x1(t) xm(t) y(t)

Measured data Measured data

Extra-
polation

Area

Extra-
polation

Area

Extra-
polation

Area
(Forecast)

Measured data (Example)
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Fields of Application of Structure Modelling
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Simplified block diagram of the multi-layered GMDH algorithm
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Subdivision of data into a “learning data set" and a “test data set":

x1 x2 xm.................
1
2

l

y

learning data set

test data set

Models become increasingly complicated until they reach the minimum of the 
selection criterion. 

Example:

....... 3
5
2

3
19621710 +++⋅+= xxxAxxAxAAy i
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number of steps

value of selection
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new array Z

z11

z21

zn1

points on the
regression

surface
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m1
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Data Division
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Preparation of measured data depending 
on purpose of modelling

Definition of input groups of competing 
partial models for the considered layer

Preparation of data for all partial 
models for the considered layer

Separation of data (into learning data l
and test data t)

Calculation of coefficients of partial 
models for the considered layer

Calculation of evaluated output values 
of all partial models

Calculation and arranging of values of 
structure selection criteria for all partial 
models for the considered layer

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Selection of the best partial models F
(based on selection criteria values)

Re-evaluation of coefficient of the best 
partial models  F now using the 
complete data set l+t

Use of the best partial models F as 
input models on the next selection 
layer 

Step 8

Step 9

Step 10

Step 11

Improvement of Termination
Criterion ?

Checking of 
selection layer:

YES

Step 12 Termination of selection and backward 
calculation of the complete model

Stop

NO
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